Dr. Szilágyi József

Külföldön megjelent idegen nyelvű folyóiratcikk

[1] Szilágyi J., 1992.
Why can the weighting parameter of the Muskingum channel routing method be negative?,
Journal of Hydrology, 138: 145-151.

[2] Szilágyi J., G. G. Katul, M. B. Parlange, J. D. Albertson, A. T. Cahill, 1996.
The local effect of intermittency on the inertial subrange energy spectrum of the atmospheric surface layer,
Boundary Layer Meteorology, 79: 1-2.

[3] Szilágyi J., C. J. Vörösmarty, 1997.
Water-balance modeling in a changing environment: reductions in unconfined aquifer levels in the area between the Danube and Tisza Rivers in Hungary,
Journal of Hydrology and Hydromechanics, 45: 348-364.

[4] Szilágyi J., M. B. Parlange, 1998.
Baseflow separation based on analytical solutions of the Boussinesq equation,
Journal of Hydrology, 204: 251-260.

[5] Szilágyi J., M. B. Parlange, D. C. Rundquist, D. C. Gosselin, 1998.
NDVI relationship to monthly evaporation,
Geophysical Research Letters, 25(10): 1,753-1,756.

[6] Szilágyi J., M. B. Parlange, J. D. Albertson, 1998.
Recession flow analysis for aquifer parameter determination,
Water Resources Research, 34(7): 1851-1857.

[7] Szilágyi J., M. B. Parlange, G. G. Katul, J. D. Albertson, 1999.
An objective method for determining principal time scales of coherent eddy structures using orthonormal wavelets,
Advances in Water Resources, 22(6): 561-566.

[8] Szilágyi J., 1999.
On the use of semi-logarithmic plots for baseflow separation,
Ground Water, 37(5): 660-662.

[9] Szilágyi J., M. B. Parlange, 1999.
A geomorphology-based semi-distributed watershed model,
Advances in Water Resources, 23: 177-187.

[10] Szilágyi J., M. B. Parlange, 1999.
Defining watershed-scale evaporation using a Normalized Difference Vegetation Index,
Journal of the American Water Resources Association, 35(5): 1245-1255.

[11] Szilágyi J., 1999.
Streamflow depletion investigations in the Republican River basin: Colorado, Nebraska, and Kansas,
Journal of Environmental Systems, 27(3): 251-263.

[12] Szilágyi J., 2000. Can a vegetation index be indicative of areal transpiration?, Ecological Modelling, 127: 65-79.

[13] Szilágyi J., 2001.
Identifying the cause of declining flows in the Republican River, USA,
Journal of Water Resources Planning and Management, 127(4): 244-253.

[14] Summerside, S., Szilágyi J., 2001.
Configuration of the water table,
circa 1995, 1x2 degree Valentine Quadrangle, Nebraska,
Környezetvédelmi és Feltárási Osztály, Nebraskai Egyetem.

[15] Szilágyi J., 2001.
On Bouchet's complementary hypothesis,
Journal of Hydrology, 146: 155-158.

[16] Szilágyi J., 2001.
Modeled areal evaporation trends over the conterminous United States,
Journal of Irrigation and Drainage Engineering, 127(4): 196-200.

[17] Parlange, J. Y., Stagnitti, F., Heilig, A., Szilágyi J., Parlange, M. B., Steenhuis, T. S., Hogarth, W. L., Barry, D. A., Li, L., 2001.
Sudden drawdown and drainage of a horizontal aquifer,
Water Resources Research, 37(8): 2097-2101.

[18] Szilágyi J., Katul, G. G., Parlange, M. B., 2001.
Evapotranspiration intensifies over the conterminous United States,
Journal of Water Resources Planning and Management, 127(6): 354-362.

[19] Szilágyi J., M. B. Parlange, J. A. Patz, T. K. Graczyk, 2002.
Sensitivity of watershed runoff under humid conditions to potential climate variations,
Journal of Environmental Engineering, 128(7): 635-642.

[20] Szilágyi J., 2002.
Vegetation indices to aid areal evapotranspiration estimations,
Journal of Hydrologic Engineering, 7(5): 368-372.

[21] Szilágyi J., 2002.
Comment on "The hydrology and hydrometeorology of extreme floods
in the Great Plains of Eastern Nebraska" by Y. Zhang, J. A. Smith, and M. L. Baeck,
Advances in Water Resources, 25(6): 701-702.

[22] Szilágyi J., Harvey, E. F., Ayers, J., 2003.
Regional estimation of base recharge to ground water using water balance and a base-flow index,
Ground Water, 41(4): 504-513.

[23] Szilágyi J., 2003.
Sensitivity analysis of aquifer parameter estimations based on the Laplace-equation with linearized boundary conditions,
Water Resources Research, 39(6): art.# 1156.

[24] Szilágyi J., 2003.
State-space discretization of the KMN-cascade in a sample-data system framework for streamflow forecasting,
Journal of Hydrologic Engineering, 8(6): 339-347.

[25] Szilágyi J., 2004.
Comment on "A reappraisal of the Kalman filtering technique as applied in river flow forecasting"
by M. Ahsan and K. M. OConnor, Journal of Hydrology, 285: 286-289.

[26] Szilágyi J., 2004.
Vadose zone influences on aquifer drainage,
Journal of Hydrology, 286: 78-86.

[27] Szilágyi J., 2004.
Accounting for stream-aquifer interactions in the state-space discretization of the KMN-cascade for streamflow forecasting,
Journal of Hydrologic Engineering, 9(2): 135-143.

[28] Szilágyi J., 2004.
Heuristic continuous baseflow separation,
Journal of Hydrologic Engineering, 9(4): 311-318.

[29] Szilágyi J., Harvey, F. E. , Ayers, J, 2005.
Regional estimation of total recharge to ground water in Nebraska,
Ground Water, 43(1): 63-69.

[30] Szilágyi J., Bálint G., Gauzer B., Bartha P, 2005.
Flow routing with unknown rating curves using a state-space reservoir-cascade-type approach,
Journal of Hydrology, 311: 219-229.

[31] Szilágyi J., Bálint G., Csik A., 2006.
Hybrid, Markov chain-based model for daily streamflow generation at multiple catchment sites,
Journal of Hydrologic Engineering, 11(3): 245-256..

[32] Szilágyi J., Parlange, M. B., Bálint G., 2006.
Assessing stream-aquifer interactions through inverse modeling of flow routing,
Journal of Hydrology, 327: 208-218.

[33] Szilágyi J., 2006.
Discrete state-space approximation of the continuous Kalinin-Milyukov-Nash cascade of noninteger storage elements,
Journal of Hydrology, 328: 132-140.

[34] Szilágyi J., 2006.
Comment on "Using numerical modelling to evaluate the capillary fringe groundwater ridging hypothesis of streamflow generation" by H.L. Cloke, M.G. Anderson, J.J. McDonnell, and J.P. Renaud,
Journal of Hydrology, 329: 724-729.

[35] Szilágyi J., 2006.
Comment on "Evaluation of the impact of groundwater irrigation on streamflow in Nebraska"
by Fujian Wen and Xunhong Chen,
Journal of Hydrology, 331: 605.

[36] Szilágyi J., 2007.
On the inherent asymmetric nature of the complementary relationship of evaporation,
Geophysical Research Letters, 34, L02405, doi:10.1029/2006GL028708.

[37] Szilágyi J., Gribovszki Z., Kalicz P., 2007.
Estimation of catchment-scale evapotranspiration from baseflow recession data:
Numerical model and practical application results,
Journal of Hydrology, doi:10.1016/j.jhydrol.2007.01.004.

[38] Szilágyi J., 2007.
Analysis of the nonlinearity in the hillslope runoff response to precipitation through numerical modeling,
Journal of Hydrology, doi:10.1016/j.jhydrol.2007.02.005.

Nemzetközi konferencia-kiadványban megjelent idegen nyelvű publikáció (min. 4 oldal)

[39] Szilágyi J., Bálint G., Csik A., Gauzer B., Horoszné-Gulyás M.,
Simulation of the superimposition of floods in the Upper Tisza Region,
in "Transboundary Floods: Reducing Risks Through Flood Management", Marsalek, J., Stancalie, G., és Bálint G. (Szerk.),
NATO Science Series, IV. Earth and Environmental Sciences 72, 2006, Springer, Dordrecht, Hollandia.

Magyar nyelvű folyóiratcikk

[40] Szilágyi J., 1989. Az antropogén klímaváltozás hatása egy víztározó teljesítőképességére, Vízügyi Közlemények, 71(2): 322-331.

[41] Szilágyi J., 1991. A Muskingum-módszer ellentmondásainak vizsgálata, Vízügyi Közlemények, 73(1): 73-80.

[42] Szilágyi J., 1992. Vízállások előrejelzése adaptív, sztochasztikus modellel, Vízügyi Közlemények, 74(1): 91-104.

[43] Szilágyi J., C. J. Vörösmarty, 1993.
A Duna-Tisza közi talajvízszint-süllyedések okainak vizsgálata
, Vízügyi Közlemények, 75(3): 280-294.

[44] Szilágyi J., 2005. A Diszkrét Lineáris Kaszkád Modell kiterjesztése nem egész számú tározó elemre, Hidrológiai Közlöny, 85(1): 37-41.